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Note

Vortex Tangie Simulations

As a result of the measurement of the attenuation of second sound in rotating
superfluid “He [1, 2] the turbulent state of superfluid *He has been modeled for
decades [3-5] as a self-sustaining tangle of quantized vortex hnes. Paradoxically.
even though quantized vortices behave like classical ideal vortices Schwarz [6-1C]
claims to be able to accurately model a vortex :angle with the self-induction
approximation [ 117, which is known to be a poor approximation to Enler’s equa-
tion. Our work [12-14] has resolved this paradox by showing that if the numerica;
calculations are underresolved there is an artificial generation of vortices at smail
scales in the self-induction model equation which is not present when the eguaticn
is soived correctly.

For compieteness we briefly describe the equation that is being solved and the
reconnection algorithm. The goal of the numerical calculations is to calculate the
equilibrium line length density L of vortices present in a vortex tangle; this was
attemnpted by writing the evolution equation for an individual voriex.

or . , ., .
E=,8r XT" 4o’ X wg - far’, (i}
where r is the position of the vortex, r is time, ' indicates derivative with respsci o
arclength, w, is the relative velocity between the normal and superfluid com-
ponents, f§ = (k/4n) In(R/a,), k is the quantum of circulation, R is the radius of cur-
vature, dq is the core radius (= 1.2x 10 %cm), a=(p,B)/(2p). B is the Hail-Vinen
constant {1}, and p, and p are the normal component density and total density
respectively. «, ff, and w, are taken to be constants in the calculations. The vortex
interaction algorithm is made non-local by the reconnection ansatz which states
that whenever two vortices cross they reconnect. The reconnection is unique since
the vortex has a direction associated to it by the direction of the vorticity. The
numerical calculations in [7] assume triply periodic boundary conditions and
follow the evolution of vortex configurations which initially consist of a few vorex
rings. It is found that the line length present in the periodic cube eventually reaches
an equilibrium value which fluctuates about some constant value. Vinen argues
neuristically {5] that

L=1y{wol/B), (2

and Schwarz obtains numerical results which agree with Eq. (2). We obtain resuits

which agree with Eq. (2) only when we underresolve the numerical computation.
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When the numerical computations are properly resolved we do not obtain the
scaling given by Eq. (2) [13, 147.

For the numerical calculations Schwarz makes Eq.(1) dimensionless by
arbitrarily choosing a length scale / and a time scale ¢, =/%/f; with this choice of
units, Eq. (1) becomes [7, 8]

ar ’ '/+ / ’ + " 3)
—=TI Xr A= XW ar .
ot B 0 (

B=1.0x10"%cm?s in the numerical simulations; a typical value of « is 0.1 and a
typical value for /|w,|/f is 40.

There is an inherent length scale present in Eq. (1) equal to f/lw,] and an
inherent time scale equal to p/(|w,|?); we define the dimensionless position
x=r |w,|/f and the dimensionless time 7= ¢ |w,|?/f and obtain from Eq. (1) that

a A "
F%ZX’XX”HX’XWOMX, (4)

where W, is a unit vector in the w, direction. Although Schwarz was apparently
aware of the length scale f/{w,] [6] in Eq. (1) he chose the scaling given in Eq. (3)
for his numerical simulations.

A detailed analysis of Eq. (4) shows that in these dimensionless units in order to
accurately solve Eq. (4) the numerical mesh spacing 4& must be chosen so that

A< (5)
for both the numerical scheme used by us [14] and for the numerical scheme used
by Schwarz [9]. If the condition in Eq. (5) is written in physical units we find that
the spacing between points on the vortex Ar must satisfy the condition:

_pag _p

Ar = < .
wol |wg]

(6)

Thus it is not sufficient to simply keep the mesh spacing “small compared to the
smallest radius of curvature of the line” as Schwarz does [15]. Spurious loops will
form even though the reconnection is artificially smoothed and the reconnection
appears to be properly resolved in terms of its maximum curvature.

Equation (6) indicates the reason one does not want to scale Eq. (1) to obtain
Eq. (3) asis done in [ 7, 8]. If 4r is held fixed and |w,| is varied as is done in [7, 8]
the actual resolution of the calculation is changing.

Although Schwarz readily admits that vortex loop generation is responsible for
maintaining the vortex tangle [7], he also assures us that it is trivial to establish
that his simulations never produce spurious vortex loops [16]. Schwarz claims to
be able to make the reconnection in such a way that even though the calculation
is underresolved the spurious loops will not form [167]; this is an interesting claim
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which is not trivial. An implementation of an aigorithm which would preven: the
formation of spurious loops without properly resolving the voriex would require
detailed knowledge of the long-time behaviour of the general solution of Eq. (4; for

every possible angle between two vortices when they cross and flor every possible

orientation of the vortices relative to w,; we are not aware that any such informa-
tion is available. The only way one is able to determine which evolution is correc
is to properly resolve the calculation and thereby calculaie the solution to the
evoluiion equation. Our calculations show that when the numerical compuiation s
underresolved the long-time asymptotic state is unstably dependent on the manner
in which the reconnection is made even if it is artificially smoothed as in {16}

Schwarz actually observed this spurious loop generation in some of his calcu a-
tions [8] in which he observed that he could change his results by a factor of 2
4, depending on how he made the reconnections in his almuia*iors Schwarz
observed that when he “artificially inhibited the surface reconneciions” he oovid
raduce the line length density.

There is one final claim made by Schwarz which is irrelevant to the queston a’
hand: that is the question of the randomizing procedure, which is now claimed o
be a key ingredient of the procedure but had not been divulged for five years {167
This procedure is not necessary for small values of the parameter » as we show in
[147. Since we are able to reproduce the incorrect numerical results which agres
with £q. {2) and which agree with the results Schwarz obtained, it is irrelevant that
our calculations do not include the randomizing step. The fact thar we de not add

a randomizing step has absolutely no relevance to the question at hand.

The only relevant question is whether one can numerically solve Eq. 14) wher the
equation is underresolved. The unsurprising answer to this guestion is thar one
cannot accurately solve Eq. (4) when it is underresoived.

This coniroversy can be resolved simply if the actual initiai conditions used for
the simulations presented in [7, 87 are made available. Equatior. (1} along with the
reconnection ansatz specifies a unique evolution for 2 system of vortices and '?z I
a simple matter to check the solutions by properiy resciving the calculations usin
either of the two available algorithms [9, 13]. We have working versions of t
algorithms which we are happy to make available to anyone who wishe@ £
calculate the solutions of the evolution of the vortex systems.
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